

Background

- Payloads and Systems components contain elemental mercury (Hg)
 - Lamps (metal halide, fluorescent)
 - Amounts range from ~2-30 mg Hg
- Current environmental control systems cannot remove mercury from the cabin atmosphere

Properties of Mercury

- Occurs in three primary chemical forms
 - Divalent (compounds and ions)
 - Organic compounds (methylmercury, ethylmercury)
 - Elemental

Properties of Mercury

- Liquid at room temperature
- Slightly volatile at room temperature
 - Volatility (vapor pressure) increases steeply as temperature increases
 - Insoluble in water

Exposure to Mercury

- Vapors are the primary health hazard
 - Readily passed into the bloodstream from inspired air
 - Accumulates in the brain and kidneys
 - Oxidized to the divalent form and eliminated primarily through feces and urine
 - Average ½ life is ~60 days in the human body

Acute Health Effects

- Respiratory irritation and inflammation
 - Cough, chest pain/discomfort, impaired pulmonary function
- Neuropsyciatric symptoms
 - Tremor, irritability, hyperactivity

Chronic Health Effects

Central nervous system (CNS)

- Tremor, decreased coordination
- Erethism (irritability, excitability, loss of memory, loss of self-confidence, insomnia, and depression)
- Kidneys
 - Renal dysfunction (proteinuria, etc.)

Current Spacecraft Maximum Allowable Concentrations (SMACs)

- 1-hour: 0.1 mg/m³
- 24-hour: 0.02 mg/m³
- 7-day: 0.01 mg/m³
- 30-day: 0.01 mg/m³
- 180-day: 0.01 mg/m³

Safety Evaluation

- US Payload Safety Review Panel (PSRP) elected to consider release of elemental Hg a unique hazard
- Toxicology tasked with developing a nonhazardous limit

Considerations

- Single limit is insufficient
 - Different health endpoints for acute and chronic exposures
 - Chronic exposures possible since current ECLS systems cannot remove Hg
- Toxicology developed limits for exposures lasting 30 days or less and more than 30 days

Considerations

- Mercury Vapor Formation
 - Temperature dependent
 - Operating (heated) vs. stowed
 - Short-term vs. long-term exposure

Environmental Assessment and Risk Analysis Element

Research Project Summary

February 2004

Release of Mercury From Broken Fluorescent Bulbs

Michael Aucotta, Michael McLindenb, and Michael Winkac

17-40% of 4.5 mg Hg contained in fluorescent bulbs volatilized in a sealed environment over a period of 2 weeks at temperatures ranging from 40-85°F.

Calculating Exposure Concentration

- Stowed items on manned vehicles when exposure is expected to occur for 30 days or less (Shuttle, Soyuz)
 - Total Hg x 40% ÷ total vehicle volume
- Operational (heated) items on manned vehicles when exposure is expected to occur for 30 days or less
 - Total Hg x 100% ÷ total vehicle volume

Calculating Exposure Concentration

- For unmanned vehicles (Progress, HTV, ATV)
 - Total Hg x 100% ÷ total vehicle volume
- For manned vehicles when exposure is expected to occur for more than 30 days (ISS)
 - Total Hg x 100% ÷ total vehicle volume

Final Recommendations

- Mercury vapor concentrations of 0.1 mg/m³ or less for 30 days or less will not result in a critical or catastrophic toxicity hazard
- Mercury vapor concentrations of 0.01 mg/m³ or less for more than 30 days will not result in a critical or catastrophic toxicity hazard